(x^2-7)/(x^2-x-6)1

Simple and best practice solution for (x^2-7)/(x^2-x-6)1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-7)/(x^2-x-6)1 equation:


D( x )

x^2-x-6 = 0

x^2-x-6 = 0

x^2-x-6 = 0

x^2-x-6 = 0

DELTA = (-1)^2-(-6*1*4)

DELTA = 25

DELTA > 0

x = (25^(1/2)+1)/(1*2) or x = (1-25^(1/2))/(1*2)

x = 3 or x = -2

x in (-oo:-2) U (-2:3) U (3:+oo)

(x^2-7)/(x^2-x-6) < 1 // - 1

(x^2-7)/(x^2-x-6)-1 < 0

x^2-x-6 < 0

x^2-x-6 = 0

x^2-x-6 = 0

DELTA = (-1)^2-(-6*1*4)

DELTA = 25

DELTA > 0

x = (25^(1/2)+1)/(1*2) or x = (1-25^(1/2))/(1*2)

x = 3 or x = -2

(x+2)*(x-3) = 0

(x^2-7)/((x+2)*(x-3))-1 < 0

(x^2-7)/((x+2)*(x-3))+(-1*(x+2)*(x-3))/((x+2)*(x-3)) < 0

x^2-1*(x+2)*(x-3)-7 < 0

x-1 < 0

(x-1)/((x+2)*(x-3)) < 0

(x-1)/((x+2)*(x-3)) < 0 // * ((x+2)*(x-3))^2

(x-1)*(x+2)*(x-3) < 0

( x+2 )

x+2 < 0 // - 2

x < -2

( x-1 )

x-1 < 0 // + 1

x < 1

( x-3 )

x-3 < 0 // + 3

x < 3

(-oo:-2) (-2:1) (1:3) (3:+oo) x+2 - + + + x-1 - - + + x-3 - - - +

x in (-oo:-2) U (1:3)

(-oo:-2) U (1:3)

See similar equations:

| 12(x-1/2)ñ- | | 2n-42=-18 | | 5-4+7x+1=4x+9 | | 2g+4g+3g-4g+10h=5g+10h | | 6.7-4.7m=3(2m-1) | | 2x+4y+21z= | | 8-5w=-8w-10 | | X^3+3x^2-30=0 | | 2x^3-7x^2-7x+12= | | 8k=6+7k | | 9x^4-3x^2-4=0 | | 4876(7899554556669+9+9+9544484884484826262662595x)=555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555x+10 | | -6+s=3s+4 | | -2z+10=-z | | 4x^2-16x+152=0 | | -6-6u=-7u | | 3y-1=6x-13 | | 135879(4559p)+-54889645654=468p(88684477) | | p+15=-78 | | 9h=7h-6 | | 6x^3+x-26=0 | | 20.5*2.4= | | -(3-7x)=9+5x | | -1/3s=12 | | 7(3x-4)=5 | | 99=r+4 | | x^2+10x+17=13x+5 | | 3(2x+3)=10x+4-4x+5 | | 7-(5-8x)=4x+4 | | -77=u+-1 | | 2-3(-4r+3)=-59 | | 3[2(x+5)+4(x+10)]+2(2x+70)=312 |

Equations solver categories